Mutagenicity Prediction Using In Silico Methods:

Gigabyte-Sized Petri Dishes.

Antonio Sánchez Ruiz Knowledge Base Scientist antonio.sanchez-ruiz@lhasalimited.org

Leaders in the development of expert chemoinformatic systems and trusted curators of proprietary data.

Predictive Toxicology

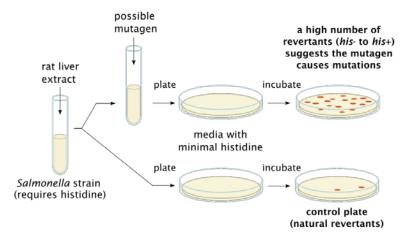
• What is it?

 Collection of strategies employed to forecast the interaction between chemical compounds that lead to adverse effects in biological systems.

• Why is it important?

⊙ ICH M7 guidelines for the assessment of mutagenic impurities in drugs explicitly include the use of *in silico* methods to fulfil regulatory requirements.

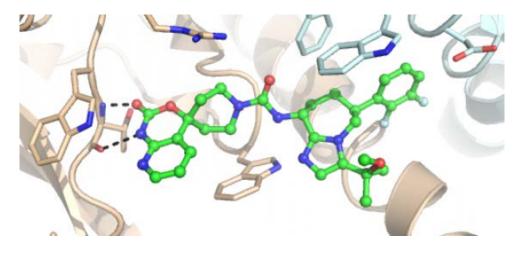
- Replaces animal testing (follows the 3R initiative: Replacement, Reduction and Refinement).
- ⊙ Fast, cost effective, reliable and reproducible approach.


Predictive Toxicology

- Genotoxicity is the capacity of a chemical compound to cause damage to DNA.
 - O It covers polyploidy, aneuploidy, mutagenicity, chromosome damage and non-inheritable DNA damage.
 - Predicting genotoxicity is essential to ensure the safety of drugs, foods, etc...

• How is genotoxicity predicted?

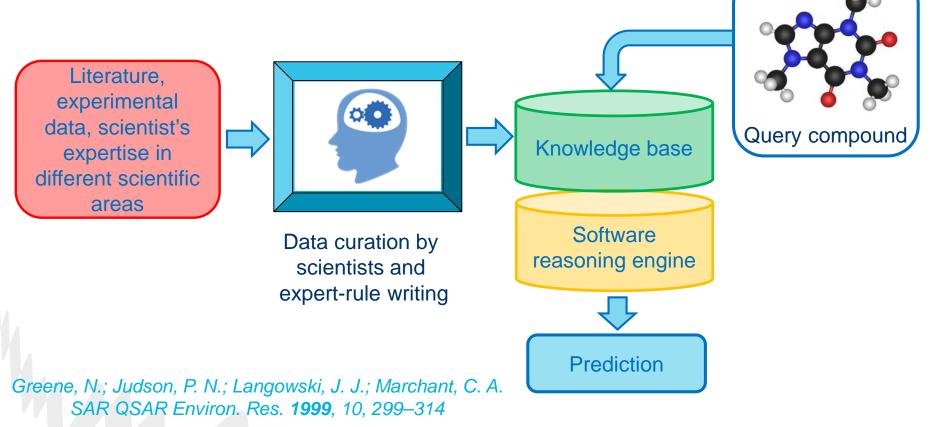
- ⊙ In vitro assays: Replacement of animal testing for cell/bacterial experiments.
- ⊙ In silico prediction methods: Replacement of in vitro assays for algorithms in a computer.


Predictive Genotoxicity

• In vitro tests

- Study the genotoxic effect of a specific chemical in bacterial, yeast or mammalian cells.
- ⊙ They are fast, easy to set up, cheaper than animal tests, simple to run, amenable for automation and provide quick results.
- Main limitations come from the extrapolation of the *in vitro* data to *in vivo* systems and from the need to have the test substance isolated and purified in sufficient quantities to conduct the tests.

Predictive Genotoxicity

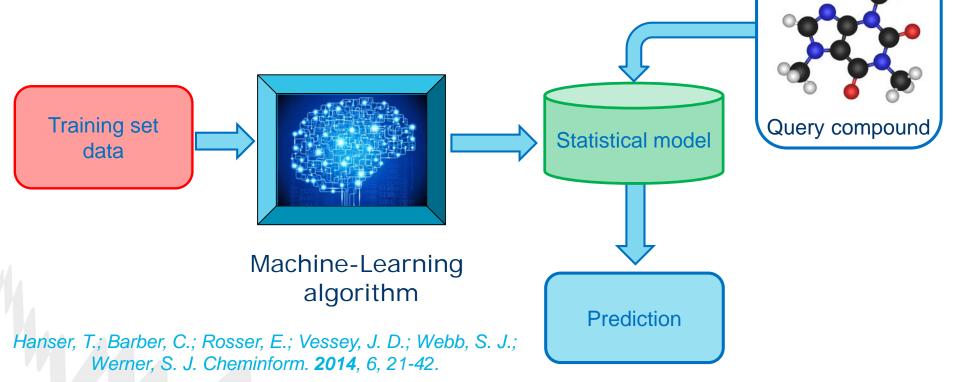

• In silico tests

- Toxicity assessment that uses computational methods to model, simulate or predict toxicity of chemicals.
- Higher throughput, faster, cheaper than *in vitro* methods and present a high reproducibility if the same model is used.
 Information about the mechanism of action can also be obtained.
- Limitations root in the quality of the dataset, not accounting for ADME features and the complexity of certain endpoints (e.g. neurotoxicity).

In silico Predictive Genotoxicity

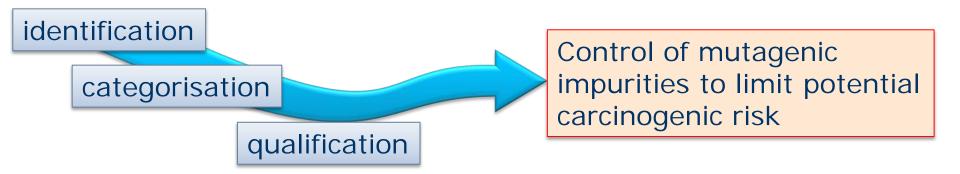
Expert Knowledge Software.

- Scientists write expert rules that relate chemical structure to toxicity.
- ⊙ Rules are based upon data and knowledge.



In silico Predictive Genotoxicity

• Statistical Modelling Software.


⊙ A training dataset is used to construct a statistical structureactivity model through machine learning algorithms.

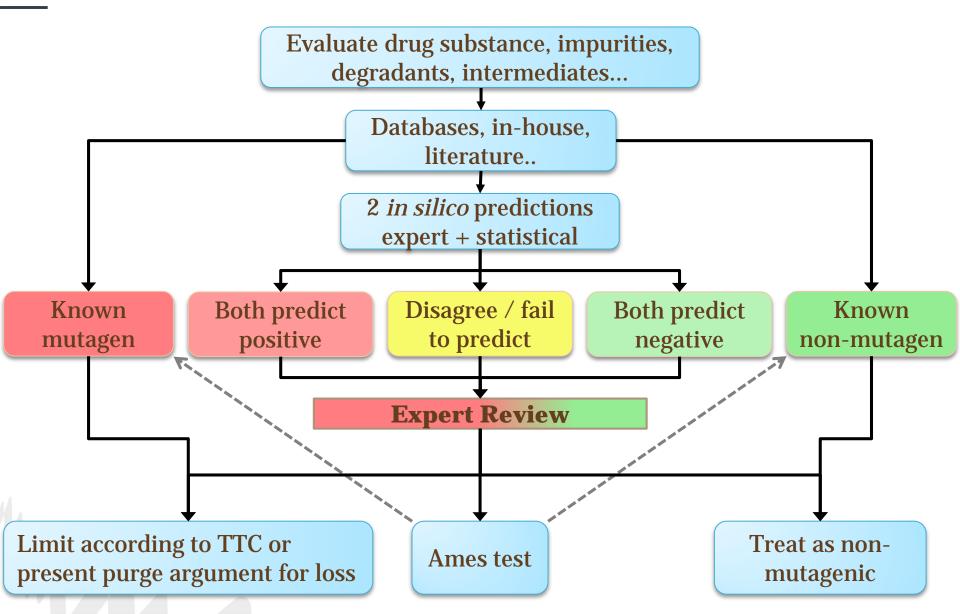
 This model is then used to predict the query compound toxicity; no human intervenes during the process.

Importance of in silico methods: ICH M7

- "Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk"
 - ⊙ 'Global' guidelines America, Europe, Japan
 - ⊙ Finalised June 2014
 - ⊙ In force since Jan 2016

http://www.ich.org/products/guidelines/multidisciplinary/article/ multidisciplinary-guidelines.html

Importance of in silico methods: ICH M7


Class	Definition	Proposed action for control
1	Known mutagenic carcinogens	Control at or below compound- specific acceptable limit
2	Known mutagens with unknown mutagenic potential (bacterial mutagenicity positive, no rodent carcinogenicity data)	Control at of below acceptable limits (TTC)
3	Alerting structure, unrelated to the structure of the drug substance; no mutagenicity data	Control at or below acceptable limits (acceptable TTC) or conduct bacterial mutagenicity assay; If non-mutagenic=Class 5 If mutagenic=Class 2
4	Alerting structure, same alert in drug substance or compounds related to the drug substance (e.g., process intermediates) which have been tested and are non-mutagenic	Treat as non-mutagenic impurity.
5	No structural alerts, or alerting structure with sufficient data to demonstrate lack of mutagenicity or carcinogenicity	Treat as non-mutagenic impurity.

http://www.ich.org/products/guidelines/multidisciplinary/article/ multidisciplinary-guidelines.html

Focussing on the *in silico* predictions...

- Q(SAR) Requirements:
 - ⊙ must predict the outcome of a bacterial mutagenicity assay
 - ⊙ one expert rule-based; the second statistical-based
 - ⊙ both should follow the OECD principles
 - a defined endpoint;
 an unambiguous algorithm;
 a defined domain of applicability;
 appropriate measures of goodness-of-fit, robustness and predictivity;
 a mechanistic interpretation, if possible.
- The absence of structural alerts from both is sufficient to conclude that the impurity is of no mutagenic concern
 - ⊙ Expert review can provide
 - additional supportive evidence
 - ◎ reason to dismiss an *in silico* prediction
 - rationale to support the final conclusion

In silico workflow under ICH M7

Lhasa Limited Solutions

Derek Nexus – Expert knowledge-based toxicity prediction software

Meteor Nexus – Expert decision support software for predicting the metabolic fate of chemicals in mammals

Vitic Nexus - Chemical database and information management system, offering researchers and scientists rapid access to searchable toxicological information

Zeneth - Expert decision support software for predicting the forced degradation pathways of organic compounds

Sarah Nexus - Statistical-based software for the prediction of mutagenicity

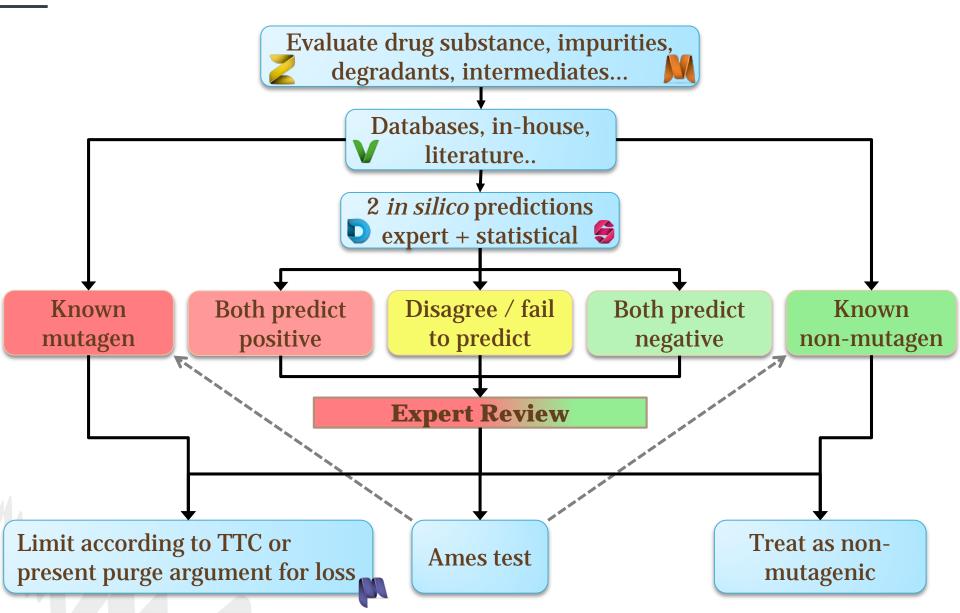
Lhasa Limited Solutions

Derek Nexus – Expert knowledge-based toxicity prediction software

Meteor Nexus – Expert decision support software for predicting the metabolic fate of chemicals in mammals

Vitic Nexus - Chemical database and information management system, offering researchers and scientists rapid access to searchable toxicological information

Zeneth - Expert decision support software for predicting the forced degradation pathways of organic compounds



Sarah Nexus - Statistical-based software for the prediction of mutagenicity

Of expert and statistical systems...

	_	
	Expert system	Statistical system
Data	 Public and confidential data Wider knowledge - mechanism, reactivity, related assays 	 Transparent systems can only show non-confidential data
Methodology	 Human-written rules based upon data & knowledge 	 Machine-learnt fragments Machine-learnt significance of each fragment
Scope of alert	 Human defined (Markush) 	 Fragments learnt by model
Interpretability	 Expert commentary Mechanistic explanation Supporting examples References Confidence Highlights areas of uncertainty 	 Transparent methodology No uninterpretable descriptors or definitions of applicability Learning summarised Direct link to training set Confidence in prediction

How Lhasa fits into ICH M7 workflow

Conclusions

- Predictive Toxicology tries to forecast toxicity by studying the perturbation of biological pathways on a molecular basis.
- ⊙ It moves away from the direct observation of adverse effects in animals to *in vitro* and *in silico* tests.
- ⊙ *In vitro* assays provide experimental data in a fast way.
- ⊙ In silico methods are faster, more cost effective and have a higher throughput than in vitro assays.
- ⊙ Reliability of *in silico* methods results has motivated the possibility of being employed as a substitute for *in vitro* assays, as stated by ICH M7 guidelines for mutagenicity.
- ⊙ Improvements in computational power and new algorithms will cause a sheer increase in the predictive capabilities of *in silico* methodologies.

Thank you for your attention!

